ত্রিকোণমিতিক ফাংশন এবং তাদের সংজ্ঞা

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ১ম পত্র | NCTB BOOK
495

অন্বয় এবং ফাংশন গাণিতিক এবং প্রোগ্রামিং এর দুটি গুরুত্বপূর্ণ ধারণা। এখানে তাদের ব্যাখ্যা দেওয়া হলো:


অন্বয় (Composition)

অন্বয় হল দুই বা ততোধিক ফাংশনের সমন্বয়। যখন একটি ফাংশনের আউটপুটকে আরেকটি ফাংশনের ইনপুট হিসেবে ব্যবহার করা হয়, তখন তাকে অন্বয় বলা হয়। এটি সাধারণত \(f(g(x))\) বা \(f \circ g(x)\) আকারে প্রকাশ করা হয়, যেখানে \(g(x)\) প্রথমে কার্যকর হবে এবং এরপর \(f(x)\) তে যাবে।

উদাহরণ:
ধরা যাক \(f(x) = x + 2\) এবং \(g(x) = x^2\)। তখন, \(f \circ g(x)\) হবে:
\[
f(g(x)) = f(x^2) = x^2 + 2
\]


ফাংশন (Function)

ফাংশন এমন একটি গাণিতিক সম্পর্ক যা একটি নির্দিষ্ট ইনপুটের জন্য একটি নির্দিষ্ট আউটপুট প্রদান করে। অর্থাৎ, ফাংশন একটি ইনপুটকে একটি নির্দিষ্ট আউটপুটে ম্যাপ করে। ফাংশন সাধারণত \(f(x)\) আকারে প্রকাশ করা হয়, যেখানে \(x\) হল ইনপুট এবং \(f(x)\) হল সেই ইনপুটের জন্য আউটপুট।

উদাহরণ:
\(f(x) = 2x + 3\) একটি ফাংশন যেখানে \(x\) ইনপুট হলে আউটপুট হবে \(2x + 3\)।

Content added || updated By
Promotion
NEW SATT AI এখন আপনাকে সাহায্য করতে পারে।

Are you sure to start over?

Loading...